Answer:
Option D
Explanation:
We have
$y_{n}=\frac{1}{n}((n+1)(n+2)...(n+n))^{\frac{1}{n}}$ and
$\lim_{n \rightarrow\infty}y_{n}=L$
$\Rightarrow$ L= $\lim_{n \rightarrow\infty}\frac{1}{n}[(n+1)(n+2)(n+3)....(n+n)]^{\frac{1}{n}}$
$\Rightarrow$ L= $\lim_{n \rightarrow \infty}\frac{1}{n}[(1+\frac{1}{n})(1+\frac{2}{n})(1+\frac{3}{n})....(1+\frac{n}{n})]^{\frac{1}{n}}$
$\Rightarrow$ $\log_{}{L}=\lim_{n \rightarrow\infty}\frac{1}{n}[\log_{}{}(1+\frac{1}{n})+\log_{}{}(1+\frac{2}{n})+\log_{}{}(1+\frac{3}{n})....\log_{}{}(1+\frac{n}{n})]^{\frac{}{}}$
$\Rightarrow$ $\log_{}{L}= \lim_{n \rightarrow\infty}\frac{1}{n}\sum_r^n\log_{}{(1+\frac{r}{n})}$
$\Rightarrow$ $\log_{}{L}= \int_{0}^{1}1 \times \log_{}{(1+x)dx} $
$\Rightarrow$ $\log_{}{L}= (x.\log_{}{(1+x)_0^1}-\int_{0}^{1}[\frac{\text{d}}{\text{d}x}(\log_{}{(1+x)\int_{}^{} dx]dx} $
[ by using integration by parts]
$\Rightarrow$ $\log_{}{L}= [x \log_{}{(1+x)_0^1}-\int_{0}^{1} \frac{x}{1+x}dx$
$\Rightarrow$ $\log_{}{L}= \log_{}{2}-\int_{0}^{1}(\frac{x+1}{x+1}-\frac{1}{x+1})dx $
$\Rightarrow$ $\log_{}{L}= \log_{}{2}-[x]_0^1+[\log_{}{(x+1)]_0^1} $
$\Rightarrow$ $\log_{}{L}= \log_{}{2}-1+\log_{}{2}-0 $
$\Rightarrow$ $\log_{}{L}= \log_{}{4}-\log_{}{e}=\log_{}{\frac{4}{e}}$
$\Rightarrow$ $L=\frac{4}{e}$
$\Rightarrow$ [L]=[$\frac{4}{e}$]=1